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The spectrum and eigenfunctions of the Frobenius-Perron operator induced by 
the tent map are discussed in detail. Special attention is paid to the case where 
the critical point of the map lies on an aperiodic trajectory and the differences 
from maps with a periodic critical trajectory are stressed. It is shown that the 
relevant eigenvalues of the spectrum are not sensitive to the aperiodicity of the 
critical trajectory. All other parts of the spectrum and all eigenfunctions in par- 
ticular are changed drastically if the critical trajectory becomes aperiodic. The 
intimate connection between the point spectrum and the kneading invariant is 
established and the critical slowing down as well as the band splitting are a con- 
sequence of its properties. The structure of the infinite sequence of null spaces 
and its implications on the spectrum of the operator are discussed. It is shown 
that any initial distribution P(0, x) of bounded variation can be projected uni- 
quely onto the eigenfunctions of the relevant eigenvalues and that the time 
dependence of P(n, x) is determined by this expansion up to an error O(r/n). 
From this the stationary and the asymptotic behavior of the correlation 
function (x(n) x )  can be derived exactly. 

KEY WORDS: Chaos; tent map; Frobenius-Perron operator; null space; 
spectrum; left and right eigenfunctions; adjoint operator; invariant measure; 
critical slowing down; correlation functions; power spectrum. 

1. I N T R O D U C T I O N  

In the last half decade there has been a growing interest in nonlinear 
dynamical systems. The most outstanding examples of such systems are the 
Lorenz model (1) which has a continuous time parameter, and the logistic 
equation (2) with a discrete time parameter. A rich structure of subharmonic 
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bifurcations, period doublings, universal functions, Cantor sets, noisy 
bands, and chaos has been found. (3) But in all these cases, a large part of 
the investigations had to be done numerically. Analytic results are often 
restricted to qualitative descriptions like the Sarkovskii ordering of periodic 
orbits of continuous maps with a single maximum or the existence of non- 
zero measures of maps everywhere expanding. So, I think, it is justified to 
look for examples where quantitative results can be derived analytically. 

We will discuss the band splitting, the critical slowing down, and the 
long time tails of the correlation function (x(n) x)  for the particularly sim- 
ple, but nontrivial tent map: 

I axn, 
xn+l = f ( x n ) =  (a -axe ,  

x < 1/2 
(1.1) 

x>~ 1/2 

in the entire parameter regime a~(1 ,  2]. The behavior of this map has 
been discussed extensively by Derrida et al. (6) Our main interests are the 
spectrum and the eigenfunctions of the Frobenius-Perron operator H, 

HP(x) = ~ Id/dx f yl(x)l P ( f  ~-l(x)) Zf.~(x) 
i 

(1.2) 

where f f l  are the different branches of the inverse of f (x)  and Z~ 1(x) is the 
indicator function of the branch i. 

Having found the eigenfunctions Pn(x) of H, we can calculate the 
correlation function (xnx)  

(x(n) x)  = f x(n) xd#= IzxHn(xd#) (1.3) 

if there is an expansion 

XUo(X) = ~ ~iPi(x) (1.4) 
i = 0  

where #0(x)= Po(x) is the invariant density and c~ i are coefficients, still to 
be determined. We are specially interested, if this expansion makes sense 
for all parameter values of a and, if this is the case, how the coefficients ei 
can be determined. (For a detailed description of a special parameter set 
see Mori et al.(4).) 

The tent map has been investigated in great detail very recently by 
Mori and coworkers (5) for those parameter values a, where the trajectory 
of the critical point xc= 1/2 (hereafter called the critical trajectory) is 
periodic or falls onto a periodic orbit in finite times. Then, the invariant 
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density is piecewise constant and has only a finite number of steps. The 
steps define the boundaries of mutually disjoint intervals. The tent map is 
now equivalent to a finite Markov chain and the problem of finding spec- 
trum and eigenfunctions of the Frobenius-Perron operator is reduced to 
linear algebra in a finite-dimensional vector space. However, the set AM of 
parameter values a with this property is of measure zero. (We will call this 
the periodic case.) Although Mori et al. (5) found numerically, that the time 
correlation function and the power spectrum are insensitive to small 
deviations from the periodic case, it is certainly worthwhile to investigate 
whether the predictions made for maps with periodic critical trajectories 
carry over to maps with an aperiodic critical trajectory. The special case of 
the tent map with a = 2 has been recently discussed by Grassberger (12) for 
the special case of analytic densities. 

We will discuss in the following the spectrum of H with respect to 
various function spaces: 

I. L2(/.t): Space of functions f defined on (0, 1)= I such that 

I lf]2 #(x) dx < 

where #(x) is a positive semidefinite measure density. 
II. L2(/1) 1By: Space of functions from L2(/l) such that V a r ( f ) <  oo. 

III. LP(#): Space of piecewise polynomial functions with jumps only 
at the points {fn(0)}. 

IV. L0(#): Space of piecewise constant functions with jumps only at 
the points {fn(0)}. 

The number of jumps is finite if the critical trajectory is periodic and 
infinite otherwise. Eigenfunctions of H which are elements of LO(#) will be 
called relevant (for reasons which will become clear later) and their eigen- 
values 2i are called relevant eigenvalues if ]2i1 > 1/a. The norm we use for 
elements of LO(tO is 

1[ p(x)[I 0 : = Var(p(x)) + p(0 + ) (1.5) 

Restricting the domain of H to LO(kt), the first part of the results can 
be summarized in the following way: 

(i) The relevant part of the spectrum of the Frobenius-Perron 
operator is not sensitive to whether a e  (1, 2] is an element of AM or not: If 
aEAM,  one can always find a finite interval [a, a + 6 o ]  such that the shift 
of an eigenvalue 12a--2a+601 is smaller than a given e, provided the 
modulus of the eigenvalue 2a is larger than 1/a. 

Furthermore, one can find another 3, usually very much smaller than 
c5 o, so that no additional eigenvalue will be found with modulus larger than 



96 D6rfle 

1/(a - e). We will discuss these statements for the case a = xf2 (i.e., the first 
band-splitting transition). The generalization to other values of a � 9  M, is 
straightforward. 

(ii) The low-lying eigenvalues, however, are changed dramatically. 
If a �9 AM, the spectrum of H consists of a pure point spectrum and the 
point 2 = 0, which is infinitely degenerate. If a r A M, the point spectrum 
with modulus smaller than 1/a vanishes and instead we get a continuous 
spectrum at = 1/a. 

(iii) Allowing LP(#) as domain, the operator H has polynomial-like 
eigenfunctions of degree 2n with nonzero eigenvalues, if a � 9  If a q~ AM, 
the only eigenfunctions with eigenvalues 2 ~ 0  are stepwise constant 
functions. 

(iv) If we consider the larger function space L2(#), every complex 
number I,~1 < 1 is eigenvalue of H for an infinite number of eigenfunctions 
irrespective of whether the critical trajectory is periodic. 

(v) If a �9 A M, H can be restricted to a compact operator H which 
acts on the finite-dimensional space LO(t~) and the adjoint operator H~ + has 
the same nonzero spectrum as Hc. ,This is not possible, if a r AM. Then, H 
is not compact, the adjoint operator has no null space, and the only eigen- 
values of H § are roots of 1. 

(vi) For  any h ( x ) � 9  there is a unique projection of h(x) 
onto the relevant eigenfunctions pn(x) �9  LO(~) such that 

]lHnh(x) - ~ cee()~e)" pt(x)[] ~c~"  (1.6) 
i--O 

where ]'~mt > ~ > 1/a, 2i the rn + 1 largest relevant eigenvalues and ~i are 
constants determined by a Riemann-Stieltjes integral over h(x). The pro- 
jection algorithm works although there are no left eigenfunctions for eigen- 
values I)vil • 1. 

(vii) The nondecaying part of the correlation functions can be 
calculated exactly for all parameter values a. Asymptotically, the power 
spectrum does not depend on the distinction a �9 A M or a ~ AM. 

We should mention that the exact invariant density for all parameter 
values a has already been derived by Derrida eta/.  (6) a s  a consequence of 
their 2 expansion. The calculations of this paper follow a path opposite to 
that of Derrida et al. They started from the 2 expansion and found the 
invariant density. We, however, find from a general ansatz for all steplike 
eigenfunctions the 2 expansion as the characteristic polynomial of the 
relevant point spectrum of the Frobenius-Perron operator. 

The paper is organized as follows: In Section 2 we define the problem, 
briefly discuss the null space of the Frobenius-Perron operator, make a 
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general step function ansatz for the eigenfunctions of H, and get the 
2expansion as the characteristic polynomial. In Section 3, the charac- 
teristic polynomial is discussed and we show how the point spectrum 
depends on the control parameter a near the band-splitting point a = x/2. 
Rigoi'ous upper bounds for the shift of the eigenvalues are given and the 
critical slowing down at points a = 2 2-" as well as the band splitting are dis- 
cussed briefly. In Section 4, we show that in the aperiodic case no 
polynomial-like eigenfunctions exist and that the circle 12a] ~< 1 belongs to 
the continuous spectrum. We give an expression for the approximate eigen- 
functions and discuss finally the consequences of the infinite sequence of 
null spaces. In Section 5 we discuss the band splitting, the spectrum of the 
adjoint operator H § and the left eigenfunctions. In Section 6, we show 
how an initial distribution h ( x ) e L 2 ( # ) I B v  can be expanded in terms of 
eigenfunctions from LO(l~) and prove Eq. (1.6). In Section 7 we derive an 
expression for the nondecaying part correlation function ( x ( n ) x )  as well 
as its power spectrum. Section 8 contains the conclusions. 

2. THE FROBENIUS PERRON OPERATOR 
OF THE TENT M A P  

The geometric structure of the tent map makes it obvious that the 
intervals [0, f2(x~.)) and ( f ( xc ) ,  1 ] are irrelevant for the statistical analysis, 
because the invariant density vanishes there. Thus it is convenient to per- 
form a linear transformation of Eq. (1.1) mapping the interval 
Ff2(yc), f (xc)]  to [0, 1]. The transformed map reads 

x ' +  l = f ( x ' ) =  {~  x ' - a  + 
x .  < (a -- 1 )/a 
x .  >~ ( a -  1)/a (2.1) 

From now on, the symbol f will always refer to the transformed map of 
Eq. (2.1). The critical point lies at x c = ( a - 1 ) / a ,  the first and second 
images of x e define the boundaries of the interval [ f ( x c ) =  1 and 
f 2 (xc )  = 0]. (See Fig. 1.) The control parameter a can take any value from 
the interval (1, 2]. Since the transformation between the tent map 
[Eq. (1.1)] and the transformed map [Eq. (2.1)] is one-to-one, all results 
can easily be transcribed to the original map. 

The Frobenius-Perron operator induced by map (2.1) has the form 

( x )  1 2+,) 
H P ( x )  = 1 P 1 - + -  P O(x - 2 + a) (2.2) 

a a \ a  a 

822/4o/1-2-7 
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Fig. l. 

Xn.1 

\ 

\, / /  

/ \ 

/ 

X n 

The modified tent map is shown (a = 1.48) and the first few iterates of the critical tra- 
jectory are indicated. 

where O(x) is the stepfunction 

0, x~<0 (2.3) 
O(x) = 1, x >  0 

We are looking for solutions of the eigenvalue equation 

2Px(x)  = HP;~(x) (2.4) 

where P;.(x) denotes the eigenfunction Px with eigenvalue 2. As the domain 
of H, we allow L2(#). 

As a first point, we note that H has a large null space: Applying H on 
the function Po(x)  

Po(x)  = Pho(X) = ho(x - xc . )  O ( x -  f l f (0 ) )  (2.5) 

I f - l ( x )  and f + l(x) are the preimages of the branches o f f  with negative or 
positive slope, respectively] we get 

H P o ( x  ) = 1/a{ho(1 - x /a)  + ho(x - 1/a)} O(x - f (0 ) )  (2.6) 

If ho(x) is an arbitrary antisymmetric function, then P0 is an element of the 
null space No of H. We can construct a sequence of null spaces of index k, 
with the property 

Nk = HNk+ 1 (2.7) 



Frobenius-Perron Operator of the Tent Map 99 

Thus, the null space of index k is mapped to the space No after k iterations: 

O~ H No ,H NI* H N2 *H N3... (2.8) 

The most general element of NI is 

P<(x) = h l ( x -  f_- l(xc)) O(x- f_-zf(0)) (2.9) 

where h 1 is antisymmetric. The null space N2 is a sum of two independent 
elements, because now both branches of the inverse contribute: 

Ph2(x) =h21(x- f +*f 2_l(xc)) O(x- f +lf 2./'(0)) 

+ h22(x-f_-2(xc) ) O ( x - f  3f(0)) (2.10) 

In order to find eigenfunctions of H with nonzero eigenvalue, we try 
an ansatz of the form 

P~(x) = ao + ~ a,O(S,_~ Ix - f i (0)] )  (2.11) 
i = I  

where {ai} and {Si} are constants to be determined. We note, that this is 
the general expression for an element from LO(#). This ansatz is very 
natural: if we start with a continuous function and iterate it k times, we will 
end up with jumps at all points x~=f~(0), ie  {0 ..... k}. Starting, for exam- 
ple, with a constant function, we will get an expression like Eq. (2.11). If 
our initial test function was a polynomial of degree n [-i.e., an element from 
LP(#)] ,  we would find a piecewise polynomial function with jumps at the 
points xg. These cases will be discussed in Section 4. 

Applying the Frobenius-Perron operator H on O(& l[x- f i (O)])  we 
obtain 

HO(S~_I [-x - / ' ( 0 )  ]) = 10(S , [x  - fg+ *(0) ]) 
a 

1 1 
+ ~aa (1 - Si 1 ) O(x - f(0))  + - Si_.l O(xc- S(0))  

a 

(2.12) 

where Si is defined recursively 

Si = Si_ 1" sgn(x~-  fi(0))  (2.13) 

and S o = l .  Thus {O(S~_l[x-fi(O)])}~ is an ordered sequence of 
0 functions which are mapped into each other sequentially. Each mapping 
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produces additionally a constant and the first function in the sequence 
O(x-f(O)).  From the mapping [Eq. (2.12)] it follows that the constants a~ 
of Eq. (2.11) have to fulfill the following relation: 

ai+l=z 'a i ,  i > 2  (2.14) 

t a  1 where z=l/()L.a). Equation (2.14) is solved easily: a~=S-  ( i>  1). ao 
and a 1 are determined by two coupled homogeneous equations: 

ao=aoz+al  zS i  lO(Xc--fi(O)) 
i = 1  

al=aoz+a~ ~ zi�89 1 - S i _ l )  
i = 1  

(2.15) 

The zeros of the determinant of this system are eigenvalues of the operator 
H: 

0 =  ~ a,z i (2.16) 
i = 0  

where r Si_2, ~o = - 1 ,  and o- 1 = 1. The a sequence is the kneading 
invariant of the critical point 

G i = cri_ 1 s g n ( x c -  f i (0))  (2.17) 

where we define sgn(0) :=  - 1  and a 0 = -1 .  The results are independent of 
the sign we attribute to the slope o f f ( x )  at x = x~, but the choice - 1 is the 
simplest one we can take. Setting z = l/a, the series (2.16) is exactly the 2 
expansion of Derrida et al. (6) They derive from it the ordering of periodic 
cycles and give an expression for the invariant density. They showed also 
that the smallest real solution of Eq. (2.16) is 1/a for a given kneading 
sequence. In our derivation, this follows at once from the 
Frobenius-Perron theorem (and its generalization to function space 
operators(7'8)), which states that the spectrum of H lies within or perhaps 
on the unit circle of the complex )~ plane and 2 = 1 is always an eigenvalue. 
Here, this implies that [z[ = 1/a is a lower bound of all zeros of Eq. (2.16) 
and z = 1/a is a solution, which is in complete agreement with the results of 
Derrida eta/. (6) (See Figs. 2 and 3.) 

Making use of Eqs. (2.15) and (2.16) we obtain the unnormalized 
eigenfunctions with eigenvalue 2 

1 1 - 2 z  2 t- ~ z 'O(Si_~[x-fi(O)]) (2.18) 
P;~(x) 2z 1--z  i=1 
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Fig. 2. The unnormalized stationary probability density ~ is obtained from Eq. (2.11) for 
the parameter  value a = 1.48. 
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The eigenfunction Pl(x) with eigenvalue 2 1 = - 0 . 8 6 7 2 3  is shown. The control 
parameter  is again a = 1.48. 
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where z = 1/(2a). The normal ized  invar iant  density reads 

[ 1  a 2 - 2  } 
~(x)~Pl(X)=/" 1 ) ~  -I- ~ a - l O ( g i [ x - f i ( O ) ] )  

i=1 

where F= a - -  ~~i=~176 1 a i S i  1 fi(O) 
The invariant  density is nonzero  and positive definite on the whole 

interval, as long as a > xfl2. We will show in Section 5 that  #(x)  is positive 
semidefinite for all e e ( 1 , 2 ] .  The var ia t ion of all eigenfunctions 
[Eq. (2.18)] is bounded.  

3. THE RELEVANT POINT  S P E C T R U M  OF THE 
F R O B E N I U S - P E R R O N  O P E R A T O R  

In this section we discuss the consequences of  Eq. (2.16), which deter- 
m ines  the spect rum of a F r o b e n i u s - P e r r o n  opera to r  H whose domain  is 
restricted to the function space LO(#). 

It  is certainly not  possible to find a general solution of the charac-  
teristic po lynomia l  [Eq. (2.16)] of H for an arb i t ra ry  kneading  sequence. 
On the other  hand,  if {ai} is periodic or eventual ly periodic we can sum up 
the infinite series and find a finite n u m b e r  of  eigenvalues. If, for example,  0 
is m a p p e d  on the critical point,  the i t inerary of xc has the form 

I= {sign(x,.-fi(xc)} = - - + - - + - - + - - + . . . . .  (3.1) 

and the kneading  invar iant  [ c o m p a r e  Eq. ( 2 . 17 ) ]  

K = - + + - + + - + + - + + . . .  (3.2) 

so that  the characterist ic  po lynomia l  is reduced to 

--1 ~-Z-~Z 2 
0 -  1 - z  3 (3.3)  

and we find 21 = 1, a =  ( x / 5 +  1)/2 and 22 = - (  5x/7~---1)/( 5 x / ~ - I  ). If, on 
the other  hand,  0 is m a p p e d  to the fixed point,  the i t inerary of x~. must  be 

I =  - - + . . . . . . .  (3.4)  

and the kneading  invar iant  

K =  - + + - + - + - + ..- (3.5) 
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The characteristic polynomial can be summed up, and we find 

- 1  +2z  2 
0 = - -  (3.6) 

l + z  
with the obvious solution 

a = x/2, 21 = 1, )~2 = - 1  (3.7) 

i.e., the tent map is not mixing any longer. The periodic case has been 
investigated in great detail ~5) and we will use it only as a particular simple 
example of our more general analysis. The condition that x, lies on a 
periodic orbit is only fulfilled for a subset AM of the parameter inter- 
val (1, 2) which has measure zero. So it is an important question, how the 
spectrum and the eigenfunctions of H change, if we disturb the parameter 
value a leading to a periodic orbit of x, by a small amount e. We will pay 

particular attention to the point a =  x / 2 e A M ,  because at this point the 
invariant density becomes positive semidefinite and a second eigenvalue of 
H becomes slow. There is an infinite sequence of similar points at a = 22-M, 
M e  N, but the behavior of the map at these points can be reduced to the 
case a = , ,~ .  

Investigating the aperiodic neighborhood of a = x ~ ,  we will use 
Rouch6's Theorem (9) several times: Let us suppose we have two complex 
functions f~(z) and f2(z), holomorphic on an open, simple connected region 
D and we can ensure that ]fl(z)[ > [f2(z)[ on the entire boundary C of D. 
Then f l (z )  has the same numbers of zeros as f l ( z ) + f 2 ( z )  within C. 

The characteristic polynomial [Eq. (2.16)] is well defined for all z 
within the unit circle of the complex plane. 

If the polynomial is finite (that means, the critical point belongs to a 
periodic orbit), one can show that all zeros of Eq. (2.16) are bounded 
above by Izl = 2: Using Rouch6's theorem, one looks for a circle Iz] = const 
such that 

N--  1 I~ri Zi  Z ~ < Izl N (3.8) 

is guaranteed along the circle. Independently of N, we find 

N loizi [z IN_I  [2+~IN 1 
~o < - - -  < 12+7lN---- IzlN (3.9) 
i [zl - 1 1 + 

if Izl = 2 + 7 and 7 > 0. This defines a bound for all eigenvalues of stepwise 
constant eigenfunctions of H with xc periodic: 

1 > [21 > 1/2a (3.10) 
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Next, we want to investigate the spectrum near the periodic case 
a = ~ .  The itinerary of x~ at this point is 

I ~ = , / 5 -  + . . . . .  _ + ( _ ) 0 o  (3.11) 

The negative subsequences of I will be denumerated 1, 2, 3 .... starting from 
the first ( + ). So /./2 has only a first infinite negative sequence. If we are 

near a = x/2, the itinerary I ,  will have a very long but finite first sequence 
of ( - ), followed by ( + ), then again a certain number of ( - ) followed by 

( + ) and so on. If a < x/2, it is clear from the geometry of the map that all 
negative sequences must have an odd number of elements followed by a 
single ( + ), so that the most general expression for I with a < xf2  is 

Ia<.,/~-- +--(----)kl-I---(----)k2-l---(----)k3""kl>ki (3.12) 

where the first negative sequence is the largest of all sequences. Then the 
kneading invariant reads 

K , < . / 5 =  - + (+  _ )k ,+1 (_  +)k2+1(+ _)k3+~...  (3.13) 

and the characteristic polynomial 

po(z )  = y ,  a i z  i 
i = 0  

can be written 

p•(z) = (1 -- z) p•2(z 2) 

where the kneading sequence belonging to p~2 is 

K,2<2 = _(+)k~+l  (_)~2+1 (+)k3+1. . .  

Looking for the zeros of pa(z), we get 

(3.14) 

(3.15) 

where p~2(z) is the characteristic polynomial of a map fa' with control 
parameter a ' =  a2>, , f2 .  Thus the spectrum of H ,  is obtained taking the 
roots of all eigenvalues of H~2 and adding the additional point 2 = 1/a to 
the spectrum. Because there are now two eigenvalues with modulus 1 
(2o = 1 and 21 = -1 ) ,  the flow is no longer mixing. 

This procedure can be repeated at each point a = 22-N and we get the 
characteristic polynomial 

N - - 1  

P(z)=P(z2u) l~ (1-z2~),  22 N ~ < a < 2 2 - u  (3.17) 
t r  

z = 1 and pa2(Z 2) = 0 (3.16) 
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As far as the relevant spectrum is concerned, we can restrict ourselves to 
the parameter interval a e IV/2,2],  because the following intervals 
a e  [ - 2 2  u+~, 22 N] can be rescaled to [2, xf2].  The most striking object in 
the neighborhood of a = x/2 is the appearance of a second slow eigenvalue 
2 = - 1 .  

If a>.x/2,  the geometry of the map ensures that the most general 
itinerary has the form 

Ia>./2- +(__)N(+)(_)m~(+)(_)m2, x/5+1 >x/~ (3.18) - - - -~- i  > a 

where N is a nonzero number which goes to infinity as a approaches x/2. 
As long as a is smaller than the golden mean, a symbol ( + )  is always 
enclosed by two symbols ( - ) .  The kneading invariant takes the form 

K a > . S =  _ + + ( _  _l_)N_~_ (__ q_)ll _ _(+ _/2 t or + . - -  
+ (_ +/2 

(3.19) 

where li is the integer part of M j2 .  We subtract formally the kneading 
sequence Ka=,/2 and get 

t t 1 ~ -~ ~- ( 0 )  2 N + 3  ) ... ( 3 . 2 0 )  g [ - K a > x / 2  --Ka= /2] + (-- +)z', or 

o(oo/~ 

Keeping only the leading order, the characteristic polynomial reads 

- 1 + 2z 2 1 - -  Z 2(/1 + 1) 
1- 2 Z  2 N + 3  ~- (3.21) 

po>~(z)= l + z  l + z  

We are now looking for the zeros of the infinite series 

( l + z )  pa (z )= - - l+2z2+2Za+n- -2Z3+n+Zh+  "'" (3.22) 

where n = 2 N +  2 tells us how many iterations it takes un t i l f " (x , )  crosses 
to the left-hand side of xc for the second time. 

Making use of Rouch6's theorem, the influence of the aperiodicity of 
f n ( x c )  on the zeros of Eq. (3.22), can be estimated. We have to look for 
closed curves, which satisfy the inequality 

2tzl "+1 
- - <  ] - 1  +2z21 (3.23) 
1 - ] z l  2 
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(We used the fact that all li are larger than or equal to 1.) First, we choose 
a small circle around z = _ l /x /2  with radius 4. Then we have to find an n, 
such that Eq. (3.23) is guaranteed. After some algebraic manipulations, we 
obtain 

n + l  > in 2/1~1- l n ( 2 - , , ~ )  ~ < 0.15 (3.24) 
in x f 2 -  ln(1 + ,,/2 ~)' 

Inserting ~ = 1/10, 1/100, 1/1000, we find that the trajectory of the critical 
point, periodic or aperiodic, must not cross to the left-hand side of x~. 
before n = 13, 15, and 21 iterations, respectively, in order to ensure that the 
distance between the smallest zeros of p(z) and _+ 1 / , ~  is smaller than ~. n 
grows logarithmically with 1/1~], which implies that the relevant eigen- 
values of H are insensitive, to whether xc lies on a periodic orbit. 

The situation is different, if we look for an e > 0 ,  such that no 
additional zeros of p(z) appear within a circle with radius ]z] = 1 - ~ of the 
complex plane. Starting again from Eq. (3.23), we find that n has to satisfy 
the inequality 

ln(2/e) 
n ( e ) > 7 + - -  (3.25) 

in order to ensure inequality (3.23) along the circle Izl = 1 - e .  The outer 
circle is much more sensitive to a small deviation from the value a = 
than the two eigenvalues _+ 1. (i.e.,z = T-l/x/-2). To make sure that there 
are no other eigenvalues with modulus larger than 2 , ,~ /3  (e = 1/4), the 
trajectory of the critical point must not cross to the left-hand side of x,. 
before 15 iterations. Thus, given e and r there is always a small but finite 
parameter interval a e Ix/-2 + 6, , ,f2],  such that the large eigenvalues of the 
Frobenius-Perron operator do not change considerably. 5(n) is 
approximately 5 ~ ( ( , , ~  - 1 )/x/2) 1/'. 

There is a dense set of parameter values where x,. lies on a periodic 
orbit and the eigenvalues are known. (5) Shifting the control parameter a 
tiny amount from these values, one always finds that the relevant eigen- 
values are not sensitive to the change in a. For the parameter values are 
dense, the intervals [a+6, a - 5 ]  established by our inequalities can be 
made to overlap, and it is possible to follow the eigenvalues of H for larger 
deviation of a from , ,~ .  

Knowing that the relevant eigenvalues are continuous functions of a, 
we can investigate the critical slowing down of the eigenvalue 2 = - 1  near 
the band splitting, applying Newton's method to p(z): 

0 = - 1  + 2 Z  2 + Z l + n  - -  Z 1 + n + / +  . . .  (3.26) 
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Introducing z = T-l /x/2 + ~, we find 

n + l  4 = _ ( 2  ) ( , , + 4 ) / 2 _ [ _ ( 2 ) ( n + / + 4 ) / 2 ~  "2 - -  (2) I2n + 5)/2 (3.27) 

To leading order, both eigenvalues are shifted by the same amount. The 
critical slowing down is obtained solving the equations 

1 1 

a ac 

1 1 
~., a~, = x/2 

ai t  a c 

(3.28) 

for it: 

2 =  - 1  + 2  ( a - a t )  a > a c  
ac (3.29) 

i t =  - 1  a < a  c 

The critical slowing down at higher-order band-splitting points a N = (2) 2-~' 
follows directly (compare 3.17) from Eq. (3.28) by rescaling the parameter 
a and taking the 2 N root: 

it = ( - 1) z N(1 - x/2  [a 2+" - a~+~']) (3.30) 

Equations (3.29) and (3.30) have already been derived in a different way in 
Ref. 5. 

4. POLYNOMIAL EIGENFUNCTIONS,  THE CONTINUOUS 
SPECTRUM AND THE NULL SPACES 

So far, we have only investigated the very restricted class of stepwise 
constant eigenfunctions. The most general expression for these functions 
[Eq. (2.11)] is valid for periodic and aperiodic fn(xc). I f f f (xc)  is periodic, 
Eq. (2.11) can be summed up and, if 1/]2a] > 1, continued analytically to 
eigenvalues outside the unit circle. The system of eigenfunctions obtained in 
this way is certainly not complete. A natural extension of the very restricted 
function space LO(l~) would be to allow for piecewise polynomial functions 
from LP(I~) and to look for eigenfunctions of H in this larger space. If, for 
example, a =  ~ ,  we find the following eigenfunctions of H (there is 
actually an infinite number of piecewise polynomial eigenfunctions; we list 
only the first few of them): 
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1. Piecewise constant eigenfunctions: 

#(x)  = Po = z ,  + , / 2  x2, 2 = 1  (4.1a) 

the invariant density, and 

P o  = Z1 - , ~  X2, 

2. Piecewise linear eigenfunctions 

P1 = [2x -- (2 -- , , ~ ) ]  )~1, 

P l l  = - 2 1 2 x -  (3 - x /2)]  X2, 

2 =- - - 1  (4.1b) 

2 = 0  
(4.1c) 

P1 = HPll 

(these functions belong to the null space of H) and the piecewise quadratic 
eigenfunctions: 

3. P~- = {x 2 - 2/3(3 - 2 x/2)} Zx + {(x - 1 )2 _ 1/3(3 - 2 x/2)} xf2 )~2, 

2 = 1/2 

P~ = {x 2 -  2 / 3 ( 3 -  2 x/2)} X1 { ( x -  1) 2 -  1 /3 (3 -  2 ,,/2) } x/2  )~2, 

2 = - 1 / 2  (4.1d) 

where )~1 and )~2 are the indicator functions of intervals (0, 2 - x  f 2  ) and 

( 2 - x f 2 ,  1), respectively. This system is sufficient to expand x#(x) and 
x2#(x) in terms of eigenfunctions of H and to determine the correlation 
functions (h(x,)x) and (g(x,)x2). The calculation of these and all other 
polynomial eigenfunctions can always be reduced to the problem of finding 
the eigenvalues and eigenvectors of finite-dimensional matrices or of 
solving an inhomogeneous system of linear algebraic equations. The set of 
eigenvectors we get in this way is obviously complete, and we can expand 
any function from L2(#) in terms of these eigenfunctions. 

So, one might try to find corresponding sets in the case of aperiodic 
critical trajectories. A possible ansatz would be 

N 

P(S)(x)=cu+ ~ ~ {(Si[X--fi(O)])N--'a~} O(S i l [ x - - f i (O)J )  (4.2) 
i = l  n = O  

The eigenvalues are determined by the highest power of x in the equation 

2P(N)(x):laP(N)(1--X--]+I\ a/ aP(N)( x-2+a 1) O(x--2+a) (4.3) 
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In the linear case, N =  1, the characteristic polynomial p~(z) can be sum- 
med up, and we get 

1 
p~(z) = - -  (4.41) 

1 - -  z/a 

so that the eigenvalue equation reads 

j~a 2 

0 - -  )~a2 ~ (4.4b) 

which has only the trivial solution 2 = 0. Thus the linear polynomial and all 
other polynomials of odd degree belong to the null space. 

As far as the even polynomials are concerned, we will restrict ourselves 
to the quadratic case: 

P(x) = ~ {o~i[Si_ l(X--fi(O))] 2 + #i[S,~rtx-- f'(O))] + 7g} 
i = 0  

x O(S, 1 { x - S ( 0 ) ] )  (4.5) 

Inserting Eq. (4.5) into the eigenvalue Eq. (4.3) and comparing equal 
powers of x, we get the recursive relations 

~i=WO~i, fli+l~--awfli, )~i+l=a2w~i, i > 1  (4.6) 

w = 1/(2a3), with the solutions 

~i =Wi 1~l' f l i=-(aw)i-lf l l ,  7i=(a2w) i ~71, i > 1  (4.7) 

The eigenvalues )~ are determined from the homogenous system of algebraic 
equations for % and u l- We get exactly the characteristic polynomial of the 
stepwise constant eigenfunctions [Eq. (2.16)] if we replace z by w. Thus, 
for every eigenvalue 2 (0) of the stepwise constant system there is an eigen- 
value 2 (2) of stepwise quadratic eigenfunctions and they are related by 

2(0) 
2 ~2~ - (4.8) a 2 

This statement extends to all polynomial eigenfunctions of degree (2n) 

2(o) 
2 (2") - -  a2,, (4.9) 

Inserting Eq. (4.8) into Eq. (4.7), the coefficients of the expansion 
[Eq. (4.5)] read 

c~i=[1 / (2(~  ~i=(1/2(~ i ~ 1 ,  7i=(a/2(o))i l./~ (4.10) 
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We know from the Frobenius-Perron theorem, (2) that [,~(~ I < 1 when 
a ~ (1, 2]. Thus the partial sums of /~ and ~ diverge even for 2 (~ 1, unless 
the critical trajectory is periodic and the sums can be continued 
analytically: If xc lies on an aperiodic orbit, there are no polynomial-like 
eigenfunctions of the form of Eq. (4.5). This is rather plausible, if we 
remember that the jumps of the ansatz (4.5) are dense on the interval 
(0, 1). So, we have no possibility of distinguishing between a polynomial 
eigenfunction of degree n and the stepwise constant eigenfunction by 
investigating the neighborhood of a given point. It makes sense, however, if 
there is only a finite number of jumps as in the case of a periodic critical 
trajectory. 

So far, we have found only a finite number of eigenfunctions with 
eigenvalues 1 > I21 > l/a, which is certainly not sufficient to expand an 
arbitrary initial probability distribution P(x, 0) ~ Lz(/Z ). On the other hand, 
ansatz (2.11) is the most natural one, because it already mimics the forward 
iteration we want to apply on P(x, 0) afterwards. The only way out is that 
there is an accumulation of eigenvalues at the circle Izl = 1 or that the cir- 
cle belongs to the continuous spectrum of H. Near [zl = 1, the ansatz (2.1 1) 
is ill behaved because the infinite series converge badly. At I z l =  1, we can 
only hope to find a sequence of approximate eigenfunctions. 

In this sense, we start with a well-defined function PN(x)E LO(#) and 
see if it is reproduced under the application of H to some accuracy: 

PN(X) - -  2a - 1 ~a O(xc -- f i (0))  Si_l 
i = l  

+ ~a O(Si l[x--fi(O)]) 
i = l  

(4.11) 

where 2 is an arbitrary complex number at the moment. Applying H to it, 
we find 

aHPN(X ) -- 2aPN(x) 

= Taa O ( S ~ [ x - f ~ + l ( o ) ] )  

+ 2a Z zi (1--SN) O(x--f(O)) 
i=o ai - - \2a]  2 

(4.12) 

Using the 0 norm [compare Eq. (1.5) ] and normalizing 
PN(i.e.,/3N= P/rlP41o) the norm of Eq. (4.12) becomes 
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II HPN(X) -- 2PN(X)I] 0 

1 N+ ZaN+2 ( 1 )  N1 

i = 0  

12aZll i~l G O ( X c - - f i ( O ) ) S i -  + a  -~a 
i = l  

If [1/2al < 1, the denominator of Eq. (4.13) stays finite in the limit of large 
N and we find 

lim IIHPN(X)--2PN(X)IIo< -- 1 (4.14) 
N ~  oo i = 0  

From this, we obtain again the characteristic polynomial as a necessary 
condition for the point spectrum of H 

~ a i z i = O  (4.15) 
t '~O 

If we take 1/2a=e 'p, p Y=O, Eq. (4.13) becomes 

+ ~ 2  a~z~ 2 
1 i = 0  

][HPN(X)-- '~PN(X)HO<a N -  1 (4.16) 

and for very large N, we get 

0 1 1 N + 2  C7k e2~zlkp rlHPN(x)--; P (x)ll Z 
a ~ /  k = O  

(4.17) 

We call an aperiodic trajectory typical, if the ratio p of the numbers of 
ak = 1 and the numbers of ak = - 1  is the same for all infinite subsequences 
{ak-~l+~2}k, Cq >Cr 2 fixed, of the kneading sequence {ak}. 

For such trajectories, Eq. (4.17) simplifies to 

[[gP(x)-2~(x)]lo I;~=e,p/a-- a ~ o o  ' 0 (4.18) 

Thus, the circle 12] = 1/a in the complex )o plane belongs to the continuous 
spectrum of H 1~ and 

1 N N 
PN,~(X)--e,~_ 1 kY"l e--i~kO(x-- fk(O)) Sk ~ + Y', e '~kO(Sk_~[x-- fk(O)]) 

= k = l  

(4.19) 
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is an approximate eigenfunction of H. The right-hand side in Eq. (4.17) 
gives an estimate of the accuracy of the approximate eigenfunctions. They 
work particularly well if 2 is periodic. 

The case 11/2al > 1 only makes sense if we can ensure that 
N + 2  

~, aizi= 0 (4.20) 
i - - 0  

But the addition of a new power of z will completely rearrange the zeros 
zl u), [zlU)[ > 1 and we cannot hope that zf N) will become stationary even- 
tually, unless the critical trajectory is periodic. 

Up to now, we have concentrated on functions with jumps at points 
{fn(0)}. We have found that there is at least a finite number of eigen- 
functions from LO(#) and, under certain conditions, an infinite set of 
approximate eigenfunctions, also from LO(#). All eigenvalues of these 
eigenfunctions lie in the interval 1 ~> 12il/> 1/a. If the critical trajectory is 
periodic we find additionally stepwise polynomial eigenfunctions with 
eigenvalues 121 < 1/a, which are not stable under small perturbations. 

If we now allow for L2(/~ ) [ev=LO(#) as the domain of H we can try 
to expand an arbitrary element hsL2(#)]By in terms of eigenfunctions 
from LO(~) by projecting it into LO(~). This should give us the asymptotic 
behavior of Hnh(x). 

But there are severe complications: If we take L2(/~) [-or L2(#) l sv]  as 
domain of H, H is not compact irrespective of whether the critical trajec- 
tory is periodic. This has dramatic consequences for the spectrum of H. 

For  the sake of convenience, let us concentrate on the case of a = 2, 
where the critical trajectory ends in a fixed point. Conclusions made here 
can be transferred (11~ to all band-splitting points a = 22 N. In that case, the 
Frobenius-Perron operator reads 

HP(x) = 1/2[P(1 - x/2) + P(x/2)] (4.21) 

# ( x ) - 1  is the invariant density and Bernoulli's polynomials B2n(x/2) are 
eigenfunctions with eigenvalues 2 2~ (these are the polynomial eigen- 
functions), 

No = {sin 2~nx I n ~ N } (4.22a) 

is the null space of H, i.e., HNo = O. 

N~= {cos 2~2 ~ lqx I V~ ~+ ,  q~ (odd integers)} (4.22b) 

are successive null spaces of higher index v with the property 

N~ = HNv+ 1 (4.22c) 
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We know from Fourier analysis, that the direct sum of all null spaces and 
the invariant density form a complete linear space. The infinite sequence of 
null spaces allows us to construct a uncountable number of eigenfunctions 
of H. The simplest family of these eigenfunctions reads 

P~,q(X) =- ~ ~n cos(2rc-2 n lqx) (4.23) 
n = 0  

where q is an arbitrary odd number and 2 any complex number with 
modulus smaller than 1. Inserting this expression in Eq. (4.21), we get 

HP;~,q(x) = )tP;.,q(X) (4.24) 

because cos 7zqx can be expanded in terms of the functions of No and, 
therefore, is mapped to zero. So, we find that every point in the interior of 
the disk 12r <1 belongs to the point spectrum H and is also an 
accumulation point. This is also true for all other a, for the argument 
depends only on the existence of an infinite sequence of null spaces. 
Usually, the eigenfunctions constructed in that way are not differentiable 
but still measurable. They differ in one peculiar point from Eq. (2.11). 
Whereas the eigenfunctions of Eq. (2.1) had their jumps in the forward 
direction, the null space based eigenfunctions have jumps or other discon- 
tinuities at the preimages of the critical point (i.e., in the backward direc- 
tion). 

It can be shown that eigenfunctions of this kind with eigenvalues of 
modulus 12 l> l /a  have an unbounded variation./111 (Actually, these 
functions have a capacity dimension dc > 1.) Thus the restriction of H to 
L2(#) I Bv has a continuous spectrum 

~c= {z~C I lzt ~< l/a} 

and a point spectrum (1 ~< ])41 < 1/a). We also see that functions of unboun- 
ded variation can decay arbitrarily slowly to their stationary value. On the 
other hand, initial distributions of bounded variation will decay exponen- 
tially to the subspace LO(lz) of L2(/~)tBv because there is a finite distance 
between the continuous and the discrete part of the spectrum of H restric- 
ted to L2(/z ) IBv- In Section 6, we will show that this plausibility argument 
is correct. 

5. BAND SPLITTING A N D  LEFT E IGENFUNCTIONS 

In Section 2, the eigenfunctions Pa,~(x) have been derived, where 2 is a 
discrete eigenvalue. Below the band-splitting point (i.e., a > x / 2  ) the 

822/40,1-2-8 
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invariant density Pa.l(x) is nonzero on the whole interval and the jumps 
are dense on (0, 1). This is no longer the case if a < x/'2. The geometrical 
structure of the tent map reveals that there is an ordering of the itinerary of 
the critical trajectory as soon as a < x/~: 

f2"(0) < f2(0) < f ( 0 )  < fzn+  '(0) (5.1) 

for all positive n > 2. This enables us to evaluate the eigenfunctions Pa,~(X) 
[see Eq. (2.18) ] further: Inequality (5.1) ensures that there are no jumps of 
the eigenfunctions within the interval [fz(O),f(O)] and we get from 
Eq. (2.18) 

1 1 1 -  2z 2 ~ 2i 1 
- - +  z ~ ($2i_1+ 1) Pa'2(X) [ [f2(0)'f(0)] - -  2 z 1 - z i= 1 

+ ~, z 2i-11 ~ (1 -$2 i_2)  (5.2) 
i = 1  

It was shown in Section 3 [compare Eqs. (3.13) and (3.14)] that the 
characteristic polynomial for parameter values a < x/~ can be written in 
the form 

0 = ~, ff2i Z2i= --1 + s S2i Z2+2i (5.3) 
i = O  i = O  

and 

S2i = -S2i+ 1 (5.4) 

Inserting Eqs. (5.4) and (5.3) into Eq. (5.2) and evaluating the geometrical 
series, we finally get 

Pa,r I Ef2(o),f(o)3 = 0 (5.5) 

The critical trajectory fn+2(Xc)=fn(O) is attracted to the fixed point 

x = a/(a + 1) if a = x ~ .  If a is smaller, the critical trajectory misses it and 
f2(0) and f (0)  define the left and right boundaries of two disjoint intervals 
12 = [0, f2(0)]  and 11 = If(0),  1 ], respectively. The invariant density has 
become positive semidefinite and is split into two positive definite bands. 
All other eigenfunctions are likewise confined to the two invariant intervals 
newly brought into existence. The indicator functions of the intervals 11 
and [2 will be denoted gl and Z2, respectively. We can simplify the 
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expressions for the eigenfunctions in 11 and 12 again making use of 
Eqs. (5.3) and (5.4): 

{~ 11-2z2_ _ ~ z2i-1 1 
Pa'2(X) Z2~- Z 1---7 2 ~- ~ (t - S2 ,_ j  

i = 1  

+ ~ z2iO(S2i-,[x-f2i(O)])} Z2 (5.6) 
i = 1  

Taking into account that O(Sl[X-f2(O)]) contributes to the constant, we 
obtain 

1 1 1--2z 4 } 
P~,~(x)z2= ~z 2 i - - 7  ~- ~' z2iO(s2i+l[X--f2i+2(O)]) Z2z2 (5.7) 

i = 1  

and the interval 11: 

{ 1 _2z4 } 
Pa,2(x) )~l = Z2 -1--__-7- 5 "]- z2iO(S2i[x--  f2i+ l(O) ] ZZl ( 5 . 8 )  

i = 1  

It is easy to find a conjugacy, which connects the eigenfunctions confined in 
the bands 11 and 12 with eigenfunctions nonzero on the whole interval and 
control parameter a2: Define the transformation 

Z 2 ~ Z' 

S2i_ 2 --+ SI._ I (5.9) 

and 

7"1,o: x = L ( 0 )  + [1 - L ( 0 ) ]  x' 

in the interval I1, mapping [fa(0), 1 ] --+ [0, 1] and 

(5.10) 

T2,a: x = f ] (O)- f2(O)  x' (5.11) 

in the interval 12, mapping [0, f 2 ( 0 ) ]  -+ [1, 0]. Both conjugacies transform 
the map xn+ l=fa(xn) into the map x'n+l =f~2(x'n). Furthermore, we find 
two identities 

L 2 ( x )  = - -  

1 - L ( O )  
{f2[f~(0) + x(1 - f~(0))] + fa(0) } (5.t2) 

and 
1 

2 2 2 fa2(x) = 1 - f - ~  fa[ fa(0)- - fa(O)X]  (5.13) 
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Making use of Eqs. (5.10)-(5.14), we obtain 

1 

1 
+ 2--f~azZzP&~2({S2,}, T2l(x)) (5.14) 

where we have indicated the corresponding symbol sequences explicitly. 
Thus, the eigenfunctions of the different bands are similar, except that the 
orientation in band 2 is reversed owing to the negative Jacobian of 
Eq. (5.12). Furthermore, there are two linear conjugacies which transform 
the eigenfunction Po,X(X) into eigenfunctions Pa2x2(x). 

If  a 2 =  ~ ,  the next band splitting occurs within the two bands, and 
we can repeat the whole procedure for the renormalized expression (5.14) 
in each band separately. A new band splitting will occur at all points 
a = 2 2-N and we get the eigenfunctions 

P~,;({Si}, X ) -  2N k=O ~a zkPs 's ({S2ui} '  vk(x)) (5.15) 

in this expression, the bands are ordered such that 

f~k=)~k+l, kS~2N (5.16) 

where X0 is the indicator function of the interval I o = [f2~ 1(0), 1] and 
I2~_ 1 is the preimage of Io and contains the critical point. The linear trans- 
formation zk maps the unit interval onto the kth band, taking into account 
the correct orientation. It is a product of N inverse transformations TI,2 or 
Ts respectively. The order within the product depends on the kneading 
invariant. The Jacobian of rk is 

IIDrk[I = IIO%[I (5.17) 

because the map is everywhere linear and I o is the shortest interval The 
norm is chosen such that 

I[D~Ck[I f~ P,2," ,({S2~t}, ~k(x)) zkdx = 1 

and the prefactor 2 N ensures that 

(5.18) 

11 P~,~(x) da = 1 (5.19) 
~0 



Frobenius-Perron Operator of the Tent Map 117 

A set of left eigenfunctions of H, which belongs to the eigenvalues 
2~ = exp(27rir. 2 u), r ~ 7/2u, is given by 

2 N -  1 

= Z (5.20) 
k - - 0  

The scalar product reads [ p R =  p; compare Eq. (5.15)] 

1 P~(x) P~,(x) dx= ~ ~ 5N PJ,~S(x) dx (5.21) 
k = 0  

If 22~ # 1, the right-hand side of Eq. (5.21) vanishes because of the conser- 
vation of the norm. If 2' = exp(2~ir" 2-u) ,  we get 

1 2 N 1 

fO PaL2F'PR2r'dX=2-N E d2rci(r--r')k2-N=~rr' 
k = l  

The left eigenfunctions are eigenfunctions of the adjoint 
Frobenius-Perron operator H: 

H+ pL(x) =_ PL(f(x)) = )~pL(x) 

(5.22) 

of the 

(5.23) 

It is easy to convince oneself that the only eigenfunctions of H + have 
eigenvalues with modulus 1: Take the absolute of Eq. (5.23) and integrate 
it with respect to the invariant density #(x), 

#(x) ]PL(f(x)) b dx = ]21 g(x) tpL(x)] dx (5.24) 

Using the invariance of the left-hand side of eq. (5.24) under the transfor- 
mation x' = f ( x ) ,  it follows that 1)~[ = 1. Thus, the functions {P~(x)},  we 
found above, are the only left eigenfunctions we can expect to find. There 
are no left eigenfunctions which enable us to project an arbitrary initial dis- 
tribution to eigenfunction with eigenvalues 2 of modulus smaller than 1. 

If, on the other hand, the critical trajectory is periodic and we only 
allow for piecewise constant functions with jumps at {fn(xc}, then H can 
be written as a finite-dimensional matrix (H~m) and a left eigenbasis is 
easily constructed. But although there is a unique map from the eigenvec- 
tors of (H,m) to eigenfunctions of H, there is no such map for the left set 
and results from the finite-dimensional formalism cannot be used for the 
general problem. 
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6. THE A S Y M P T O T I C  E X P A N S I O N  OF INITIAL 
D I S T R I B U T I O N  OF B O U N D E D  V A R I A T I O N  

Although there is no hope of finding an appropriate set of left eigen- 
functions which allows us to express an arbitrary initial probability density 
in terms of an infinite sum of eigenfunctions, there are projectors (but no 
eigenfunctions) which make an asymptotic expansion possible. In view of 
what was said at the end of Section 4 it is only natural that this algorithm 
applies only for the restricted class of functions h(x)~ L2(~)]~v. Because 
h(x) is a probability density a change of h(x) on a set of measure zero does 
not change the final results on measures and correlation functions. 
Therefore we can restrict h(x) further: 

(1) h (0 ) - -0  but usually h ( 0 + ) r  
(2) h(x) continuous for all x~  Y 

where Y=  {x t f n (x )=xc  and n e ~ } ,  i.e., h(x) is continuous on all 
preimages of xc. Because h(x) is of bounded variation it could have jumps 
only on a countable subset of Y. Thus, the change of h(x) by shifting a 
jump on x e Y to a neighboring x r Y can be made to be of measure zero. 

Using Eq. (2.16) the relevant eigenfunctions [Eq. (2.18)] can be trans- 
formed into a more convenient form: 

Pn (x )=  ~ a~,+l(2,)~O(x-f~(O)) (6.1) 
k=O 

After these remarks we can state the basic facts: 

T h o o r o m .  Let h(x)6L2(#)]~v such that h ( 0 ) = 0  and h(x) con- 
tinuous on Y. Let P,(x) be a relevant eigenfunction with eigenvalue 2,. 
Then there is a function g2(x, Zm), Zm = 1/(a2m) defined by 

~2(x, Zm) = CO(X, Zm) Res 1/p(Zm) (6.2) 

where on(x, Zm) = Z~-0 (Zm) k sign[ (d/dx) fk(x)  ] �9 
such that the following relations hold (the integration is understood in the 
sense of Riemann-Stieltjes): 

fl d(P.(x)) g2(x, Zm) = 6rim (6.3) (i) 
JO 

(ii) d(Hnh(x)) g2(x, Zm) = (2m) n d(h(x)) ~2(x, Zm) (6.4) 

(iii) Let nn(x)ENnc~L2(I-t)[By, then 

fo d(n,,(x)) g2(x, Zm) = 0 (6.5) 
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(iv) H"h(x) - -  ~ O~m(~rn) n Pm(X) 2 <~ c~ln (6.6) 
rn=O 

where 1 / a < q <  f2MI, 2i are the M +  1 relevant eigenvalues with largest 
modulus and the coefficients am are determined by the integral 

c~ m= d(h(x)) f2(x, Zm) (6.7) 

The existence of integrals of type ~o 1 d(h(x)) f2(x, z) is guaranteed if co(x, z) 
is continuous with respect to x. Defining 

ak(x) = sign ~x f k ( x )  (6.8) 

co(x, z) can be written as 

co(x, z) = ~ (z) k ak(x) + O(z "+ l) (6.9) 
k = 0  

Let Xk be the set of all preimages of order k of xc 

X k : =  {xe  [-0, 1] I f ~ ( x ) = x c }  (6.10) 

Yk k = U , = o X ,  and Y= Y~. Now suppose, there is exactly one element 
Xoe [x l , x2]  which is also an element of Xt. This implies, that 
ak(xl) = ak(x2) if k = 0,..., l - 1  and ak(x~)= -crk(x2) if k =  l,..., n. Taking 
the special value z = Zm and using p(Zm)= 0 we find 

~ ( T k ( X 2 ) ( Z m ) k = - - ( Z m )  l ~ (~k(Zm) k (6.11) 
k l k--n--I 

where we have used, that az+k(x2) = ak(Xc) = crk(k ~ n -- l). Thus 

Ico(xl, Zm)--CO(X2, Zm)l ~ C IZml "+ l (6.12) 

where C~<4/(1- [z l ) .  For  all 8 > 0  there is an n such that 
ClZml "+ ~ e > C  tZml". The exponent n fixes the set Y, on which co(x, Zm) 
could have discontinuities. But Y, has only a finite number of elements. 
Thus there is a 6 such that for all x the set Ix  - 6/2, x + 6/2] c~ Y, contains 
at most one element. After having fixed 6 in this way inequality (6.12) is 
guaranteed for all IX 1 --X2[ < 6. Thus co(x, Zm) is continuous. 

For  simplicity we will assume that all zeros of p(z) we are concerned 
with are simple. In order to prove (i), we start with the trivial fact that 

lira Res(1/p(Zm)) p(Z)/(Z-- Zm) = 6,,m (6.13) 
z ~ z  n 
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where z m is a simple zero of p(z). p(z) is analytic, thus we can write 

l~(dti p(z) ] 
p(z) _ ~ (z) '~ L \dz /  z - z , ,  Z--Zm i = 0  z = 0  

i = 0  j = O  

d = ~ (z)'a,§ ~, (Zm)Jsign-~xff(x) ]x=f(o, 
i = 0  j = 0  

(6.14) 

In the limit z-~ z, ,  we finally get 

lim p(z) fj . . . .  Z--Zm = d(P.(x)) (i)(x, Zm) (6.15) 

The proof  of (ii) is purely calculational. We can restrict ourselves to the 
case n = 1, all other n follow accordingly. 

1 oo . d 

= h (1 )+  d(h(x)) sign i f ( x )  (z~)" 
n = l  

(6.16) 

Introduce the substitution x '  = f (x )  

h ( 1 ) + f ~  d(hf +l(x')) ~ " d , , =1 sign -f~x, f -l(x')(zk)" 

, = l sign --~x,f -l(x')(zk) ~ 

h(1)+ l/2~ fod(Hh(x')) ~ d , , , = sign ~ x , f  (x)(ZK) (6.17) 
n = 0  

The term h(1) can be absorbed into the integral modifying the lower boun- 
dary of Hh(x) into 

Hh(O) = 0  but Hh(0+)  r  

in accordance with the restrictions we imposed on the function space. From 
this, proposition (ii)follows immediately. 
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Now, take any function nt(k) of bounded variation from the null space 
Nt and apply the result we found above l + 1 times. Then we find 

(~k)l+lfo d(n,(x))co(x, zk)= fs d(H'+in,(x))co(x, zk)=0 (6.18) 

by the definition of Nt. This proves part (iii) of the theorem. 
In order to prove the fourth conjecture we investigate at first the nth 

iterate of h(x): 

H~h(x)= - sign f"(~) (O(x- f~(~,)) a n 

- O ( x - f ~ ( ~ +  ~))) h ( f?~(x ) )  (6.19) 

where the sum is taken over all laps of f "(x) and ~z s Y~. This can be writ- 
ten as 

Hnh(x)= 2a n P~l [s ignd f"(~i)J O(x- f"(~i)) h(~) 
i = 0  

+ C,(x) 2a-" Var(h(x)) (6.20) 

where ICn(x)l ~<1 for all n. Ordering the sequence {~i} according to dif- 
ferent orders of preimages of xc, Eq. (6.20) becomes 

n 2 

Hnh(x)=2a -n ~ a,.,+,O(x-fm(o)) ~ h(x) 
m = O  x G X n - m  2 

+ C,(x) 2a-" Var(h(x)) (6.21) 

We see from this expression, that any h(x)~ L2(11 ) [Bv decays exponentially 
to LO(#). 

Approximating h(x) by a finite number of relevant eigenfunctions 
Pt(x), we find 

Hnl~(x) = (2l) ~ 21ri P,(x) i P~) 
I = 0  

• k =1 sign ~ f (x)(zt) (6.22) 

Where /~(x) is an approximation of h(x) and we assume for simplicity 
h(0 +)=0 .  The error created by this approximation is not larger than 
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h(O + ) a - ' .  C~ is a tiny circle around z = zt in the complex plane. Using the 
definition of P~(x) and reordering the sum, we get 

Gm+ lO(x-- fm(O)) a-n fo 
m=O 

M ~c Zm n+k 
x =~02zci - - d z  

t :  , p(z) 

d(h(x))k~=l [signd fk(x)] 

(6.23) 

For the next step, it is essential that {[Zo[ ..... [ZM[ } are the M +  1 smallest 
zeros of p(z). Then the sum over the residues of Up(z) can be transformed 
into 

~, zP Z p 
,=o ~c, p -~  dz = -~7~(z) dZ+~r-fi-~dz (6.24) 

where 7 is a small circle around z = 0 and F is a large circle of radius r 
enclosing exactly the smallest M + 1 zeros of p(z). The contribution of the 
second integral can be estimated 

am+lO(x-fm(O))a "f] d(h(x)) ~ signd fk(x)2H@rzm n+kdz 
,-,,= o k = l  p(z) 

<<. a " Id(h(x))l 2~rm-n+k2H (6.25) 
m=O k = ,  IP (Z ) I  

r Var(h(x)) fo = (ar)-n (1 - r) ~ 1/Ip(re2m~)l do (6.26) 

But we know, that 12M+II <l/(ra)< I2MI. Then there is a uniformally 
bounded function C'(x), IC'(x)l ~< 1 such that expression (6.25) is equal to 

r Var(h(x)) ;o de (6.27) 
C'(x) C (1 - r )  ~ Ip(z(q~)) l  

where IAM+lr < q <  12ml. 
Evaluating the integral around z = 0, we note that 

{ Zm--n+k/p(Z) & #0 

only if k <~ n - m - 1  because p(z) is analytic at the origin. So m has to be 
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smaller than n -  1 and the largest possible k is n -  m -  1. Then all sums in 
expression (6.23) are finite and we have to evaluate 

o - 2  1 " ' -  ' _ _ d f  
~" am+lO(X-fm(O))a-'~fod(h(x')) y" sign dx' k(x ' ) ( -2~i)  

m = 0  k = l  

~Tzm n+k 
x p(z------~dz (6.28) 

Having only sums of finite length, we can interchange integration and sum- 
mation: 

a " Z ( -2~ i )  - -  dz d(h(x)) sign f~(x) (6.29) 
~-= 1 p(z) 

The Riemann Stieltjes integral can be calculated 

1 d k - - I  

fod(h(x))sign / k ( x ) = - 2  ~ ak_p 1 ~ h(x) 
p = 0  xeXp 

(6.30) 

Inserting this expression into Eq. (6.29) and rearranging the sums we arrive 
at 

a - n  
n--m 2 

2 
p = O  

(4z~i)~zm--"+I+Pp,, m_2_p(Z)/p(z) dz ~ h(x) (6.31) 
x~Xp 

__•r at(z)( Now we can write where pr(z)-  ~=o 

pr(Z)=p(z)--zr+l~(z) (6.32) 

and/5(z) is an analytic function. Then the integral around z = 0 becomes 

~ z m-" + ~ + P dz - ~ ~(z)/p(z) dz = 1/(2~zi) 6p . . . . .  2 (6.33) 

So, expression (6.28) is reduced to 

n 2 

2 am+lO(X--f~'(O)) 2a-n ~ h(x) (6.34) 
m = 0  2r 2 

Putting together expressions (6.20), (6.22), (6.27), and (6.34) we finally get 

IIO"h(x)- H~/~(x)ll 2 ~ t/n- C.Var(h(x)) 
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-2: 

Fig. 4. The projecting functions f2(x, zm) are calculated (a=1.48). (a) belongs to the 
invariant density (Zo = 1/a), (b) belongs to the eigenfunction with eigenvalue 2~ = -0.86723 

(z 1 = -1 /21a  ). 

where 1/a < q < I)~M] and 

r 

C -  1 - r  2 I-fi] + 2  | 

It is possible to find an analytic expression for the function co(x, zt) 
provided Iztl = 1/a, i.e., lilt = 1. From the expansion of a number x e  (0, 1 ) 
into its 2 series, ~6) one easily deduces that  for all a 

co(x, 1/a)=a(1 - x )  (6.36) 

If a is smaller than x ~ ,  i.e., after the first band splitting has occurred, the 
restrictions on the kneading invariant yield another  functional relation: 

~(x, z ) -  1 ~o(x, - z ) -  1 
:0, X<X* 

z--I z+l 
(6.37) 

~o(x, z) co(x, - z )  
~- : 0 ,  x>>-x* 

z - 1  z + l  
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wheref(x*)  = x*. This relation is valid for all z. Using the expansion (6.36) 

co(x ,  - l / a )  = 

one easily gets 

2a a +  1 

a - 1  a - 1  

a + l  

a - 1  

a(1 --x), x < x *  

- - a ( 1  - x ) ,  x>~x* 
(6.38) 

Similar relations hold at all band-splitting points, so that co(x, z) can be 
expressed in terms of co(x, 1/a) provided Iz~l = 1. 

Integrating expansion (6.6) by parts, we obtain 

fo d(h(x)) O(x, z/) = - fj  h(x) dO(x, zl) (6.39) 

[h (0 )=0  by definition and O(1, z t ) = 0  because sign(d/dx)fn(x)Ix=l = 
- a n ] .  The existence of the left-hand side implies the existence of the right- 
hand side. But if Izll = 1, then g2(x, zt) is a piecewise linear function and we 
can write 

f •  d(h(x)) O(x, z,) = f~ P~(x) h(x) dx (6.40) 

where P~(x) = (d/dx) O(x, zz) are the left eigenfunctions of H with eigen- 
value 2t([)~l = 1) we already discussed in the previous section. 

As an application of this algorithm we can calculate the asymptotic 
behavior of the correlation function (xnx):  

(x~x ) = dx xH~(x/~(x)) 

l =  k = O  

=~ (;~,)" d(x~(x))O(x,z~) z~- ~ ~ , + l ( z ~ ) * l - F ( 0 ) ]  2 
/ = O  k = O  

(6.41) 

where the sum over l includes the M +  1 relevant eigenvalues with largest 
moduli. It follows, that the correlation function ( x , x )  decays exponen- 
tially to its stationary part. A similar calculation for an arbitrary 
correlation function ( g l ( x , ) g 2 ( x ) )  leads qualitatively to the same results 
provided gl(x) and g2(x) are of bounded variation. In the following sec- 
tion, the nondecaying part of Eq. (6.41) will be further evaluated. 
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7. THE S T A T I O N A R Y  B E H A V I O R  OF THE 
C O R R E L A T I O N  F U N C T I O N  (x(n)x) 

Let's suppose 2M< a < 2 M/2 where M =  2 -N,  i.e., we have 2 N disjoint 
bands. The 2 N left eigenfunctions with eigenvalues 12rl = 1 can be written 
formally in the form 

L _ _  R *  R &,~r(X) -- Po,~.r(X)/P .,I(X) (7.1) 

(pL := 0, if the right-hand side of Eq. (7.1) is of the form 0/0). The 
Jacobian 

N 1 

lID%[[-1 =l(oU)= I~ ( a2~- 1) (7.2) 
~-o 

which is equal to the width lo(N ) of this band. The itinerary of the critical 
trajectory sweeps the boundaries of all intervals during the first 2 N+t  

iterations and enters the interior of I o after 2 u + 1 + 1 iterations. Thus, the 
interval I~ is given by 

/~ = [ f~+ '(x,.), f ~ + l  + 2U(x,,)] (7.3) 

and the orientation of an interval Ik is determined by the element - a ~  of 
the kneading invariant. The invariant density in the interval I0 does not 
change its orientation from band splitting to band splitting, whereas the 
orientation of the last interval (i.e., the interval which contains the critical 
point) is reversed each time a new set of bands comes into existence. 

In the following, we will concentrate on the correlation function 
(x(n) x). It can be written as 

( x(n) x)  = flx" Hn(x#(x) dx) (7.4) 

where #(x) is the invariant density Pa.l(X). We want to expand xP,~.~ in 
terms of Pa,~r : 

2 N 1 

xPo= ~ O;pPp (7.5) 
p = 0  

[Pp=__Pa,x,,(x)]. F r o m  Eq. (7.1) and Eq. (5.22) follows that ~p= ( x ) * ,  
where (X )p = ~r xPp(x) dx. 

Thus we get 

x# = ~ (x)p* Pp (7.6) 
P 
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and the correlation function (x (n)x)  becomes 

2 N -  1 2 N -  1 

( x (n )x )=  ~ (2p)"l(x)pt2= ~ e 2€ NIAx(p)12 (7.7) 
p = 0  p = 0  

where IAN(p)l 2 is the power spectrum of the correlation function: 

2 N 1 

A N ( p ) _ _  2 N E l--2zcikp2-Nf I D v ~ l P ~ , ' ~ ( r k ( x ) ) x d x  ( 7 . 8 )  

k = 0  ~Ik 

The integrals in Eq. (7.8) can be rewritten 

I lDrkl P~2,V,m(r~(x))xdx=fk+~(xc)+ {fk+l(X,)--f2N+k+l(Xc)} ~ (7.9) 
# lk 

and 

= Pa2N�92 -- 1)  d ~  ( 7 . 1 0 )  

We can split AN in a deterministic part A~) and an intraband part A~7 ), 
containing r/. A~ ) can be evaluated straightforwardly, exploiting that 

fk  + I(X~. ) _f2,v+k+ l(Xc) = __akl(oN)a k (7.11) 

where lo(N ) is the width of the smallest band. 
Then A~)(p) can be expressed as 

2 N 1 N 1 

A ~ ) ( P )  = --2-Nql(om) E e--2'~'Pk2-Nakak=~12 NI(oN) E (~N,x(P) (7 .12 )  
k = 0  1r 

with 

~bN, K(p) = (1 -- a2~e -2€ 

~N,K(P) has the property, that 

~ N , X -  I ( P )  = a2N 1 + 1 

and 

~N,N+o(P) = --TN where ~ 

(7.13) 

(7.14) 

= a 2~ - -  1 (7.15) 
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for all v > 0. The deterministic part A~)(p) can also be evaluated exactly. If 
p = 2/2. q, where q is any odd number such that p < 2 N, we get 

1 2N 1 

A~)(2/2" q) =2-u .~-o e--2=ikq2~'-Nfk+ I(x~) 

1 2N 1 1 
E e--2rtikq2~-Nfk+l(Xc) 

2--N+l k=0 

1 2 N - I -  1 
E e--2xikq2U U[fk+ l(Xc) __ fk+ I+2N-'(Xc) ] 

2--N k=0 
(7.16) 

The first part of the right-hand side of Eq. (7.16) is A~_~(2" ~q). The 
procedure can be repeated/~ times: 

{ 2~,-.1 N+~akcrk} 9 - N + i  I[(N i) --2r:iqk2 
A~)(2~'q)  = -  "- -o - Z e 

i = l  k = O  

The sums over k can be performed exactly and we obtain the power spec- 
trum: 

/2 N- i - .1  
AN(Z~''q)=-- ~ z-N+i-'I(o x-O l~ ~N-/2.~(q) 

i - - I  g = 0  

N /2 2 

+2-U+Ul(o N ,+,) ~ q6N /2,~(q) 
tc 0 

N--1 
+ r12 NI(oN)H r (7.18) 

~ - - 0  

Expression (7.18) can be evaluated further, distinguishing three different 
cases: 

(a)  ~ = N, 

1 1N~ 2 ILI N 1 2 (7.19) --  2 i ( - - 1 )  i ~ 2 + r / z - - N ( - - 1 )  u [ I  ~ AN(2N) 2 4 /=o ~=o ~=o 

(b) / ~ = N - 1 ,  

1 1 
AN(2 u 1) = ~ - - ~  cq 

N - - 2  i N 1 

2 1~1 U 0(,"c ~' 2 ' ( - 1 ) '  [ I  e~+~/2 U(_ l )U 2 (7.20) 
i = 0  s : = l  t c = l  
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(c) # < N - 2 ,  

N - - # - - 2  

AN(2~*q)=2--N+u H a~4N--,,'~(q) 
~c=0 

• l-ga  2 ' ( -1) '  
i = 0  

i ,u--1 } 
[I .  2 a N ~+~+q2 ~aN_,(--1)~ H 2 ~N u+,v  

~c=0 ~ = 0  
(7.21) 

Equations (7.19)-(7.21) give an exact expression for the power spectrum of 
the nondecaying part of the correlation function ( x (n )x ) .  With each new 
band splitting N2 N- 1 new spectral lines come into existence at the points 
2nq. 2 u. Equation (7.19) determines the amplitude of the basic frequency 
Vo = ~, Eq. (7.20) that of the first subharmonic I) 1 = ~z/2, and Eq. (7.21) 
those of all subsequent subharmonics vq = 7~- q. 2-M. The intensity of the 
subharmonic frequencies last to come into existence is obtained from 
Eq. (7.21), setting ~t=0 

N--2  

AN(q)=2 N{ 1 +qO~N} H a,~C, bu,~(P) (7.22) 
~c=0 

Concentrating ourselves on some particular line of the spectrum (i.e., 
N - # = M = c o n s t ,  but N and /~ increasing) we observe from Eq. (7.21) 
that the contribution to the correlation function from the intraband mixing 
vanishes at least exponentially with increasing/~ and N. Furthermore, the 
products H ~2 which are connected with the width of different bands 
become extremely small after a few iterations. If we define 6 = a - 1, a~ can 
be approximated by 

q--1 
0{,r ~:/N and I-[ ak ~-'Sq (1/2,,)q(q 1) (7.23) 

to=0 

Keeping only the leading nonvanishing order of Eq. (7.21) the amplitude of 
the spectral lines v0 = r~, vl -- 7:/2, vq = n- q. 2-M becomes 

1 1 
JAN(2~)] = ~ ,  IAN(U' ~)]=~ 

1 M M - 1  
tAN(2~q)I=~ ~5 1--[ [sin ~2-M-X+~ql 

~ 0  

(7.24) 

822/40/l-2-9 
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( M = N - # ) ,  respectively, q is odd and smaller than 2 ~t and M is suf- 
ficiently smaller than N. Approximating in a similar way the amplitude of 
spectral lines newly brought into existence (i.e., Vq = ~" q2-N), we obtain 

N - - 2  

IAM(q)l~--l(l +q[a2U--1]) a2u-~6N/2 1--I Isinrcq2-N+~[ (7.25) 
t o = 0  

Already after a few iterations, expression (7.25) approaches 
expression (7.24). The constant ~/ varies between - 1 / 2  and ( 1 -  2 w/2)/4 
when the control parameter a is decreased from 2 2-u+t to 2 2-N. At each 
band splitting r/ has to be reset to ~/= -1/2.  Inspecting equation (7.21), 
one finds that the power spectrum is continuous with respect to the control 
parameter: At a band-splitting point, the last term of equation (7.21) can 
be split into two parts: one of them increases the upper index of the second 
sum by 1, whereas the other one contains the reduced r/. 

The power spectrum looks rather similar to the power spectrum of the 
logistic map with the exception that the intensity of each line is scaled by a 
factor 6 M, which vanishes in the limit a ~ 1. If we decrease a --+ 1, the bands 
become extremely small and concentrated to a tiny neighborhood of the 
points 0 and 1. This is the reason why only the spectral lines v = rc and 
v=r(2  are independent of 6. If we transform the dynamical system 
[-Eq. (2.1)] back to the original tent map [Eq. (2.11)], all spectral lines 
but v = 7z are multiplied by an additional factor 3. 

8. C O N C L U S I O N S  

In the preceding sections, we have shown that the Frobenius-Perron 
operator H of even a quasilinear map has an amazingly complex spectrum. 
The qualitative results of this paper can be transferred to Frobenius Perron 
operators induced by a wide class of endomorphisms (a typical example is 
the logistic map). The crucial point is that the operators, although boun- 
ded, are neither normal nor compact. The preimages of the critical point 
are constructive elements of an infinite sequence of null spaces. Linear com- 
binations of elements of these spaces can be used to build up eigenfunctions 
of H to any 2 ~ C restricted by ]2] < 1. Usually, functions in the null spaces 
have a support smaller than the unit interval and the supports of different 
null spaces have nonempty intersections. The eigenfunctions constructed in 
this way will be discontinuous in general. If, however, the invariant density 
is piecewise constant with a finite number of jumps, then there are con- 
tinuous and even differentiable eigenfunctions. 

Maps with a piecewise constant invariant density are equivalent to 
finite Markov chains. The intervals of constant density define a natural 



Frobenius-Perron Operator of the Tent Map 131 

partition of the unit interval and the Frobenius-Perron operator becomes 
matrix valued. It is easy to determine a right and left set of eigenvectors of 
the matrix part and to find a complete base of eigenfunctions in each inter- 
val. Actually, it suffices to determine a base of eigenfunctions of that inter- 
val which contains the critical point, since the bases of all other intervals 
can be obtained by linear transformations. The invariant density of the 
critical interval is constant, so it must be conjugate to the map with control 
parameter a = 2. The polynomial eigenfunctions of this map are Bernoulli's 
polynomials B2,(x/2 ) (nonzero eigenvalues) and B2n + l(x) (null space). It is 
clear that these eigenfunctions are the most appropriate ones for an expan- 
sion of polynomial correlation functions like (x(n) x)  or (xZ(n) x2). Each 
interval has its own base and the calculation of the various coefficients of 
the expansion is a simple exercise in linear algebra. 

This scheme fails if the invariant density has an infinite but countable 
number of steps. The spectrum of the Frobenius Perron operator consists 
now of four parts: (1) 2 = 0 is a point of accumulation, corresponding to 
the null space No; (2) there is a countable number of eigenvalues in the 
interior of the annulus I/a< 121 < 1; (3) the circle [ZI--- 1/a belongs to the 
continuous spectrum, since there is a sequence of approximate eigen- 
functions {Pn}, liP, I] =1 such that lim IIHPn-2P,,I[--*0; (4) the entire 
interior of the disk 121 = 1 is part of the essential spectrum of H 
corresponding to eigenfunctions which consist of an infinite sum of similar 
elements of the null spaces Ni. (Note, that Bernoulli's polynomials of the 
periodic case a = 2 belong to this category.) We were able to show that the 
second part of the spectrum is not sensible to a small change of the control 
parameter. The isometric structure of the adjoint operator H + allows only 
for eigenfunctions with eigenvalues on the unit circle of the complex plane. 
Thus the usual well-known procedure of expanding an arbitrary initial dis- 
tribution from L2(#) in terms of eigenfunctions of H fails unless we restrict 
ourselves to the nondecaying part of the asymptotic behavior. We are, on 
the other hand, not really interested in the left eigenfunctions of H but only 
in a projection formalism which allows for the expansion of an arbitrary 
probability density in terms of eigenfunctions of H. It was shown in Sec- 
tion 6, that such a formalism exists and that the calculation of the expan- 
sion coefficients can be reduced to a Riemann-Stieltjes integral over a con- 
tinuous function f2(x, zl) with the initial distribution occurring in the dif- 
ferential. If the eigenvalue 2 t has modulus 1, an integration by part trans- 
forms the integral in the well-known inner product of a left eigenfunction 
and an arbitrary initial distribution. This formalism is restricted to function 
of bounded variation because only for those functions the existence of the 
integrals is guaranteed. It also shows that any function of bounded 
variation decays exponentially to the space of piecewise constant functions 
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with jumps in forward direction. Near the band-splitting points, the decay 
is extremely slow and for parameter values a < ~ the map lost its mixing 
property. The slow relevant eigenvalues can be seen as a first indication of 
band splittings which will take place at smaller parameter values of a. The 
short-time behavior, on the other hand, is determined by the Lyapunov 
exponent as the characteristic inverse time constant. 

Besides these well-behaved functions, there is an uncountable set of 
pathological functions. It will be shown in a subsequent paper (11) that all 
eigenfunctions with eigenvatue I,~11 >l/a constructed from an infinite 
sequence of null space based functions are of unbounded variation and it is 
even possible to show that their capacity dimension lies between 1 and 2. 
There are even more pathological functions of capacity dimension 2, which 
decay algebraically. 
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